THE CARMICHAEL NUMBERS TO 10^{12}

GERHARD JAESCHKE

Abstract

An algorithm is presented which determines all Carmichael numbers up to a given limit having a prescribed number of factors. An overview over all Carmichael numbers less than 10^{12} is given.

Introduction

In [3] all composite numbers $n<25 \cdot 10^{9}$ were tested for their pseudoprimality character, and 2163 numbers n turned out to be Carmichael numbers. (These are composite numbers n with $a^{n-1} \equiv 1 \bmod n$ for all a relatively prime to n.) While the underlying method of finding the pseudoprimes in that note had an analytic character, we tried a synthetic approach of building up the Carmichael numbers from their factors. So it was possible to determine the Carmichael numbers up to 10^{12} by a reasonable amount of computer time.

After describing the general method for determining all Carmichaels with a fixed number r of prime factors, we present a special approach for $r=3,4$ which in some cases is faster than the general procedure. Finally, we give an overview of the Carmichael numbers $<10^{12}$ in the form of some special tables containing the cardinalities of some sets of Carmichael numbers. The 6075 Carmichael numbers between $25 \cdot 10^{9}$ and 10^{12} cannot be tabulated here and will be deposited in the UMT-file.

It should be mentioned that already in 1975 the Carmichael numbers below 10^{9} have been computed by J. D. Swift and deposited in the UMT-file (see [4]).

1. General method

Our algorithm for determining Carmichaels is based upon the following three well-known facts (see, e.g., [1]).

Fact 1. All Carmichael numbers are square-free.
Fact 2. All Carmichael numbers have at least three prime factors.
Fact 3. The product of r different primes p_{1}, \ldots, p_{r} is a Carmichael number if and only if

$$
n \equiv 1 \bmod p_{i}-1 \quad \text { for } i=1, \ldots, r
$$

Before we discuss the algorithm, we describe its underlying ideas. Let r be an integer ≥ 3, and let p_{1}, \ldots, p_{r-1} be primes which satisfy the conditions

$$
\begin{gather*}
p_{1}<p_{2}<\cdots<p_{r-1} \tag{1}\\
p_{i} \not \equiv 1 \bmod p_{k} \quad \text { for } 1 \leq k<i \leq r-1
\end{gather*}
$$

Put further

$$
\begin{equation*}
R=p_{1} p_{2} \cdots p_{r-1} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
K=\operatorname{lcm}\left(p_{1}-1, \ldots, p_{r-1}-1\right) \tag{4}
\end{equation*}
$$

where lcm denotes the 'least common multiple'. In view of (1) and (2), $\operatorname{gcd}(R, K)=1$, where gcd denotes the 'greatest common divisor'. Thus, the multiplicative inverse of $R \bmod K$ exists, and we put

$$
\begin{equation*}
a=R^{-1} \bmod K \tag{5}
\end{equation*}
$$

Finally, let

$$
\begin{equation*}
g=\operatorname{gcd}(a-1, K, R-1) \tag{6}
\end{equation*}
$$

Under these assumptions the following theorem holds.
Theorem 1. $n=p_{1} \cdots p_{r}$ is a Carmichael number with r prime factors if and only if the following two statements are valid:

$$
\begin{align*}
& p_{r} \text { is a prime with } p_{r} \equiv a \bmod K, \tag{7}\\
& \frac{R-1}{g} \equiv 0 \bmod \frac{p_{r}-1}{g}
\end{align*}
$$

Proof. (a) Assume that (7) and (8) hold. Then, in view of (3), (7), (5), we obtain

$$
n=R p_{r} \equiv R a \equiv 1 \bmod K
$$

hence, by (4),

$$
n-1 \equiv 0 \bmod p_{i}-1 \quad \text { for } i=1, \ldots, r-1
$$

(8) yields $R-1 \equiv 0 \bmod p_{r}-1$, hence, $n-1 \equiv 0 \bmod p_{r}-1$, and n is a Carmichael number.
(b) Let n be a Carmichael number $n=p_{1} \cdots p_{r}$ with r prime factors. Then p_{r} is prime, and since $n \equiv 1 \bmod p_{i}-1$ for $i=1, \ldots, r-1$, we have by definition of $K, n \equiv 1 \bmod K$, i.e., $R p_{r} \equiv 1 \bmod K$ and $p_{r} \equiv a \bmod K$ by (5). Therefore (7) is satisfied. From $n \equiv 1 \bmod p_{r}-1$ we obtain $R-1 \equiv 0 \bmod p_{r}-1$, and in view of (6),

$$
\frac{R-1}{g} \equiv 0 \bmod \frac{p_{r}-1}{g}
$$

This proves the theorem.
Theorem 1 suggests the following procedure for determining all Carmichael numbers having r prime factors and being less than a given limit u.

Algorithm.

Input: u, r.
Step 1. Determine $r-1$ primes p_{1}, \ldots, p_{r-1} as follows:
$p_{1}<u^{1 / r}$
$p_{2}<\left(\frac{u}{p_{1}}\right)^{1 /(r-1)} \wedge p_{2}>p_{1} \wedge p_{2} \not \equiv 1 \bmod p_{1}$
$p_{k}<\left(\frac{u}{p_{1} \cdots p_{k-1}}\right)^{1 /(r-\ddot{k}+\mathrm{i})} \wedge p_{k}>p_{k-1} \wedge p_{k} \not \equiv 1 \bmod p_{i} \quad$ for $i=1, \ldots, k-1$.
Step 2. Calculate R, K, a, g according to (3), (4), (5), (6) and put

$$
h=\min \left\{\frac{R-1}{2},\left[\frac{u}{R}\right]\right\} .
$$

Step 3. For all $\lambda=0,1, \ldots, \max \{0,[(h-a) / K]\}$ test whether (8) is satisfied for $p_{r}=\lambda K+a$ and $p_{r}>p_{r-1}$ is a prime. In each such case, $n=R \cdot p_{r}$ is a Carmichael number.

Continue with Step 1 and determine another $(r-1)$-tuple of primes p_{1}, \ldots, p_{r-1}.
Example. Let $u=10^{12}$ and $r=4$ and, in addition, $p_{1}=17, p_{2}=241$, $p_{3}=401$. Then we find $R=1642897, K=1200, a=433, g=48$, and $h=608680$. For $\lambda=0,1, \ldots, 506$ we test whether $25 \lambda+9$ is a divisor of 34227 and find that this is the case only for $\lambda=0$ and $\lambda=456$. Since $547633=433+1200 \cdot 456$ is not prime, the only Carmichael number with the factors $17,241,401$ that is composed of four factors and is less than 10^{12} is $n=17 \cdot 241 \cdot 401 \cdot 433=711374401$.

2. Special method for Carmichael numbers WITH FOUR PRIME FACTORS

In this section we present an algorithm for determining Carmichael numbers with four prime factors p_{1}, \ldots, p_{4} that is much faster than the method of $\S 1$ in those cases where $p_{1} p_{2}$ is relatively small. The algorithm is based on the following theorem.

Theorem 2. Let $p_{1}, p_{2}, p_{3}, p_{4}$ be primes with $p_{1}<p_{2}<p_{3}<p_{4}$. If $p_{1} p_{2} p_{3} p_{4}$ is a Carmichael number, and if we put $q=p_{1} p_{2}$ and $m=\left(q p_{3}-1\right) /\left(p_{4}-1\right)$, then the following statements are valid:

$$
\begin{gather*}
m \in\{2,3, \ldots, q-1\} \tag{9}\\
q p_{3} \equiv 1 \bmod m \tag{10}\\
p_{2} p_{3}\left(m+q p_{3}-1\right) \equiv m \bmod m\left(p_{1}-1\right), \tag{11}\\
p_{1} p_{3}\left(m+q p_{3}-1\right) \equiv m \bmod m\left(p_{2}-1\right), \tag{12}\\
q\left(m+q p_{3}-1\right) \equiv m \bmod m\left(p_{3}-1\right) \tag{13}
\end{gather*}
$$

Conversely, if $m \in\{2, \ldots, q-1\}$ and if p_{1}, p_{2}, p_{3} are primes and p_{3} satisfies (10)-(13) for given m, p_{1}, p_{2}, and if $p_{4}=1+\left(q p_{3}-1\right) / m$ is a prime, then the product $q p_{3} p_{4}$ is a Carmichael number.
Proof. I. Let $n=p_{1} p_{2} p_{3} p_{4}$ be a Carmichael number with four prime factors and let q, m be defined as above. Then, by Fact $3($ cf. $\S 1), q p_{3} \equiv 1 \bmod p_{4}-1$, hence m is an integer. By definition of m we have $m<q$ and $m \neq 1$, i.e., $m \in\{2, \ldots, q-1\}$. Further, we have

$$
\begin{equation*}
m p_{4}=m+q p_{3}-1 \tag{14}
\end{equation*}
$$

which implies (10). Again by Fact 3, we obtain the system

$$
\begin{align*}
& p_{2} p_{3} p_{4} \equiv 1 \bmod p_{1}-1 \\
& p_{1} p_{3} p_{4} \equiv 1 \bmod p_{2}-1 \tag{15}\\
& p_{1} p_{2} p_{4} \equiv 1 \bmod p_{3}-1
\end{align*}
$$

hence

$$
\begin{align*}
& p_{2} p_{3} p_{4} m \equiv m \bmod m\left(p_{1}-1\right) \\
& p_{1} p_{3} p_{4} m \equiv m \bmod m\left(p_{2}-1\right) \tag{16}\\
& p_{1} p_{2} p_{4} m \equiv m \bmod m\left(p_{3}-1\right)
\end{align*}
$$

from which by (14) we immediately obtain (11), (12), and (13).
II. Now, let p_{1}, p_{2}, p_{3} be primes with $p_{1}<p_{2}<p_{3}, m \in\{2, \ldots, q-1\}$, let p_{3} satisfy (10)-(13), and let $p_{4}=1+\left(q p_{3}-1\right) / m$ be prime. In view of (14), the system (11), (12), (13) is equivalent to (16), hence equivalent to (15), and we obtain

$$
n=p_{1} p_{2} p_{3} p_{4} \equiv 1 \bmod p_{i}-1, \quad i=1,2,3
$$

Finally, $q p_{3}=1+m\left(p_{4}-1\right)$ implies $n \equiv 1 \bmod p_{4}-1$, hence n is a Carmichael number.
Remark. (13) implies $q(m+q-1) \equiv m \bmod p_{3}-1$ or, equivalently,

$$
\begin{equation*}
(q-1)(m+q) \equiv 0 \bmod p_{3}-1 \tag{17}
\end{equation*}
$$

This simplification is important in the algorithm below, since p_{3} does not occur in the left-hand expression of (17).
Algorithm. Choose $q=p_{1} p_{2}$ for fixed primes $p_{1}<p_{2}$. For each $m \in\{2, \ldots$, $q-1\}$ those primes $p_{3}>p_{2}$ are determined which satisfy (17). For each such prime p_{3} we test whether (10)-(13) are fulfilled. If not, we proceed to the next m, where we can restrict ourselves to those m with $\operatorname{gcd}(q, m)=1$. If the above conditions hold for a pair m, p_{3}, then $p_{4}=1+\left(q p_{3}-1\right) / m$ is tested for primality.

In the case of success, $q p_{3} p_{4}$ is a Carmichael number. When only Carmichael numbers $\leq u$ are wanted, only those p_{3} have to be taken into account for which

$$
p_{3} \leq \min \left\{2 q^{2}-3 q+2, \sqrt{u / q}\right\}
$$

holds.

Example. Let $p_{1}=3, p_{2}=5$. Here we have $q=15$ and m runs through the values $2,4,7,8,11,13,14$. When $m=4$, there is no prime $p_{3}>5$ for which (17) holds. For $m=11,13,14$ there exists no prime satisfying (10) and (17). For $m=2,7$ there are primes satisfying (10), (11), (12), and (17) but not (13). Finally, for $m=8$ we find $p_{3}=47$ and $p_{4}=89$, so that $n=3 \cdot 5 \cdot 47 \cdot 89=62745$ is the only Carmichael number that has four factors and is divisible by 15 .

3. Special method for Carmichael numbers WITH THREE PRIME FACTORS

Analogously to the algorithm in $\S 2$ for Carmichaels with four factors, we proceed in the case of Carmichaels with three factors. If p_{1} is a given prime, then for all $m=2, \ldots, p_{1}-1$ we perform the following steps.

Step 1. Determine the primes $p_{2}>p_{1}$ for which

$$
m\left(p_{2}-1\right) \quad \text { divides } p_{1}^{2} p_{2}+p_{1}(m-1)-m
$$

Step 2. For each prime p_{2} found in Step 1 we test whether

$$
p_{1} p_{2}^{2}+p_{2} \cdot(m-1) \equiv m \bmod m \cdot\left(p_{1}-1\right)
$$

Step 3. Proceed with the next m if the conditions in Step 2 are not satisfied. Otherwise calculate $p_{3}=1+\left(p_{1} p_{2}-1\right) / m$ and check for primality.
Step 4. When p_{3} is not prime proceed with the next m. Otherwise $p_{1} p_{2} p_{3}$ is a Carmichael number.

Since for each p_{1}, m runs only through $p_{1}-2$ values, the algorithm is very fast for relatively small p_{1}.

4. Results

Denote by $C(r, u)$ the number of Carmichael numbers which are less than u and have exactly r prime factors. Then the third column of Table 1 represents the new results.

Table 1

r	$C\left(r, 25 \cdot 10^{9}\right)$	$C\left(r, 10^{12}\right)$
3	412	1000
4	795	2102
5	756	3156
6	192	1713
7	8	260
8	0	7
9	0	0

The sum

$$
C\left(10^{12}\right)=\sum_{r=1}^{8} C\left(r, 10^{12}\right)
$$

yields the total number of Carmichaels below 10^{12}, namely $C\left(10^{12}\right)=8238$.
Remark. It is easy to show that no Carmichael number exists below 10^{12} with more than eight prime factors.

With $Q(r)$ denoting the number of $(r-1)$-tuples $\left(p_{1}, \ldots, p_{r-1}\right)$ which have to be tested in order to find all Carmichaels smaller than 10^{12}, we obtain Table 2.

Table 2

r	$Q(r)$
3	2260848
4	8372508
5	8613292
6	2924698
7	304934
8	6904

The values of Table 2 shed some light on the requirements of computer time for finding the Carmichaels less than 10^{12}. It took several hundred hours on an IBM 3083 at the Scientific Center in Heidelberg.
Remark. The values $Q(3)$ and $Q(4)$ are included in Table 2, since we did not compute the total requirements for the special algorithms in $\S \S 2$ and 3.

Let $C(x)$ denote the number of Carmichael numbers less than x, and let $\log _{k} x$ denote the k-fold iteration of the natural logarithm.

Put, according to [3],

$$
F(x)=x \cdot \exp \left(-\log x \cdot \frac{\left(1+\log _{3} x\right)}{\log _{2} x}\right)
$$

and let

$$
\begin{aligned}
& J(x)=x \cdot \exp \left(-\frac{\log x}{\log _{2} x}\left(\log _{3} x+\log _{4} x+\frac{\log _{4} x-1}{\log _{3} x}\right.\right. \\
&\left.\left.+\frac{7.1287 \log _{4}^{2} x-0.2289 \log _{4} x+2.0161}{\log _{3}^{2} x}\right)\right)
\end{aligned}
$$

Then we obtain Table 3 (the values in columns 3, 4 are rounded to integers).
It turns out that $C(x) / F(x)$ decreases relatively fast in accordance with the result $C(x)=o(F(x))$ in [2]. The approximation $J(x)$ relies on the heuristics of [2] and gives rise to a relative error of at most 1.4 percent for all integers in the range $10^{10} \leq x \leq 10^{12}$, and at most 1 percent in the range $25 \cdot 10^{9} \leq x \leq 10^{12}$.

Table 3

x	$C(x)$	$F(x)$	$J(x)$	$C(x) / F(x)$	$C(x) / J(x)$
10^{9}	646	547	640	1.18	1.0089
10^{10}	1547	1470	1547	1.05	0.9999
$25 \cdot 10^{9}$	2163	2189	2173	0.9882	0.9952
10^{11}	3605	4016	3605	0.8977	0.9999
10^{12}	8238	11141	8238	0.7394	0.9999

This is obtained by computing the values of $J(x)$ for all x and $x-1$, where x is a Carmichael number, and the fact that J increases in the range under consideration.

In [3], Table 4 shows the distribution of Carmichaels less than $25 \cdot 10^{9}$ in different residue classes. Since the distribution of Carmichaels in the range $<10^{12}$ is a similar one, we give here only the values for the odd residue classes $\bmod 12$.

Table 4

Class mod 12	Carms <25000000000	Carms < 1000000000000
1	2071	7966
3	0	1
5	20	64
7	47	147
9	25	60
11	0	0

Acknowledgment

I wish to thank the referee for his valuable criticisms and the suggested improvement of the $C(x)$-approximation formula in $\S 4$.

Bibliography

1. W. Knödel, Carmichaelsche Zahlen, Math. Nachr. 9 (1953), 343-350.
2. C. Pomerance, On the distribution of pseudoprimes, Math. Comp. 37 (1981), 587-593.
3. C. Pomerance, J. L. Selfridge, and S. S. Wagstaff, Jr., The pseudoprimes to $25 \cdot 10^{9}$, Math. Comp. 35 (1980), 1003-1026.
4. J. D. Swift, Review 13, Math. Comp. 29 (1975), 338-339.
ibM Scientific Center Heidelberg, Tiergartenstrasse 15, 6900 Heidelberg, West Germany
