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THE CARMICHAEL NUMBERS TO 101 2 

GERHARD JAESCHKE 

ABSTRACT. An algorithm is presented which determines all Carmichael numbers 

up to a given limit having a prescribed number of factors. An overview over all 

Carmichael numbers less than 1012 is given. 

INTRODUCTION 

In [3] all composite numbers n < 25. 109 were tested for their pseudopri- 
mality character, and 2163 numbers n turned out to be Carmichael numbers. 
(These are composite numbers n with an1 1 modn for all a relatively 
prime to n .) While the underlying method of finding the pseudoprimes in that 
note had an analytic character, we tried a synthetic approach of building up 
the Carmichael numbers from their factors. So it was possible to determine the 
Carmichael numbers up to 10 2 by a reasonable amount of computer time. 

After describing the general method for determining all Carmichaels with a 
fixed number r of prime factors, we present a special approach for r = 3, 4 
which in some cases is faster than the general procedure. Finally, we give an 
overview of the Carmichael numbers < 1012 in the form of some special tables 
containing the cardinalities of some sets of Carmichael numbers. The 6075 
Carmichael numbers between 25* 109 and 1012 cannot be tabulated here and 
will be deposited in the UMT-file. 

It should be mentioned that already in 1975 the Carmichael numbers below 
109 have been computed by J. D. Swift and deposited in the UMT-file (see [4]). 

1. GENERAL METHOD 

Our algorithm for determining Carmichaels is based upon the following three 
well-known facts (see, e.g., [1]). 

Fact 1. All Carmichael numbers are square-free. 

Fact 2. All Carmichael numbers have at least three prime factors. 

Fact 3. The product of r different primes P1, ..., Pr is a Carmichael number 
if and only if 

n _= I modpD. - I for i =1 ... r. 
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Before we discuss the algorithm, we describe its underlying ideas. Let r be 
an integer > 3, and let P1, ... , Pr-I be primes which satisfy the conditions 

(1) P1 <P2 < Pr-1' 

(2) pi 1 modpk for < k < i < r-1. 

Put further 

(3) R = PIP2 .Pr-I 

and 

(4) K = lcm(PI - 1, Pr_ -I 1) 

where lcm denotes the 'least common multiple'. In view of (1) and (2), 
gcd(R, K) = 1, where gcd denotes the 'greatest common divisor'. Thus, the 
multiplicative inverse of R mod K exists, and we put 

(5) a = R modK. 

Finally, let 

(6) g = gcd(a - 1, K, R- 1). 

Under these assumptions the following theorem holds. 

Theorem 1. n = P1 . Pr is a Carmichael number with r prime factors if and 
only if the following two statements are valid: 

(7) Pr is a prime with Pr-a modK, 

(8) g O mod Pr 

Proof. (a) Assume that (7) and (8) hold. Then, in view of (3), (7), (5), we 
obtain 

n = RPr _ Ra =-1 modK, 

hence, by (4), 

n - I_O modpi- I for i= 1,.. ,r-1. 

(8) yields R - 1- 0 modpr - 1, hence, n - 1- 0 modpr - 1, and n is a 
Carmichael number. 

(b) Let n be a Carmichael number n = P1 . Pr with r prime factors. Then 
Pr is prime, and since n- 1 modpi - 1 for i = 1, ..., r- 1, we have by 
definition of K, n= lmodK, i.e., RPr I modK and Pr-amodK by (5). 
Therefore (7) is satisfied. From n 1 modpr- 1 we obtain R- 1 Omodpr- 1, 
and in view of (6), 

- 
0mod Pr 

g 9 
This proves the theorem. o 

Theorem 1 suggests the following procedure for determining all Carmichael 
numbers having r prime factors and being less than a given limit u. 
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Algorithm. 
Input: u, r. 
Step 1. Determine r - 1 primes p1 *., P, 1 as follows: 

PI < ullr 

Step 2. Calculate R, K, a, g according to (3), (4), (5), (6) and put 

h=min{R2l, [j]}. 
Step 3. For all i = 0 , 1 , ... ., max{0 , [(h-a)/K]} test whether (8) is satisfied 

for Pr = AK +a and Pr > P is a prime. In each such case, n = R mPr is a 
Carmichael number. 

Continue with Step 1 and determine another (r - 1 )-tuple of primes p1, . ... 

Pr-i 1 

Example. Let u = 10 and r = 4 and, in addition, p = 17, p2 = 24, 
p3S=4O. Thenawefind R = 1642897, Kt= 1200, a=433, g= 48, and 
h = 608680. For A = 0, 1, ..., 506 we test whether 252+9 is a divisor 
of 34227 and find that this is the case only for , = 0 and n = 456. Since 
547633 = 433 + 1200 . 456 is not prime, the only Carmichael number with the 
factors 17, 241, 401 that is composed of four factors and is less than 1012 is 
n = 17. T241 - 401 v 433 = 711374401. 

2. SPECIAL METHOD FOR CARMICHAEL NUMBERS 

WITH FOUR PRIME FACTORS 

In this section we present an algorithm for determining Carmichael numbers 
with four prime factors PI, ... , p4 that is much faster than the method of ? 1 
in those cases where P1P2 is relatively small. The algorithm is based on the 
following theorem. 

Theorem 2. Let P1 , P2 P3, p4 be primes with P1 < P2 < P3 < P4 If P1P2P3P4 
is a Carmichael number, and if we put q = PIP2 and m = (qp3 - 1)/(p4 - 1), 
then the following statements are valid: 

(9) mE {2, 3, ... q 
(10) qp3 1 modm, 

(11l) P2P3(m + qP3 - 1)m modm(p-1), 

( 1 2) PIP3(m + qP3 - 1)m modm(p2 -1), 

(13) q(m+qp3-1)-m modm(p3-1). 
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Conversely, if m E {2, ... , q - 1 } and if p1 , P2, p3 are primes and p3 satisfies 
(10)-(13) forgiven m, P1, P2, and if p4 = 1+(qp3- 1)/m is a prime, then the 
product qp3p4 is a Carmichael number. 
Proof. I. Let n = P1P2P3P4 be a Carmichael number with four prime factors 
and let q, m be defined as above. Then, by Fact 3 (cf. ? 1), qp3 =1 mod p4 - 1, 
hence m is an integer. By definition of m we have m < q and m 1, i.e., 
me{2, ...,q- 1}. Further,wehave 

(14) mp4=m+qp3-1, 

which implies (10). Again by Fact 3, we obtain the system 

P2p3p4 1 modpl - 1, 

(15) P1P3P4 1 modp2- 1, 

PIP2P4 1 modp3 - 1, 

hence 

P2P3p4m m mod m(p1 - 1 ), 
(16) pIp3p4m m mod m(p2 - 1), 

PIP2P4m m mod m(p3 - 1 ), 
from which by (14) we immediately obtain (1 1), (12), and (13). 

II. Now, let PI ,P2,p3 be primes with P1 <P2 <P3, mE {2, 2 , q- 1}, 
let p3 satisfy (10)-(13), and let p4 = 1 + (qp3 - 1)/m be prime. In view of 
(14), the system ( 1 1), (12), (13) is equivalent to ( 16), hence equivalent to ( 15), 
and we obtain 

n = PIP2P3P4 1 modpi - 1, i = 1, 2, 3. 

Finally, qp3 =1 + m (p4 - 1) implies n 1_ mod p4 - 1, hence n is a Carmichael 
number. o 

Remark. (13) implies q(m + q - 1) _ m mod p3 - 1 or, equivalently, 

(17) (q - 1)(m + q)- =_O modP3 - 1. 

This simplification is important in the algorithm below, since p3 does not 
occur in the left-hand expression of ( 17). 

Algorithm. Choose q = P1P2 for fixed primes pI < P2. For each m E {2, 
q - 1 } those primes p3 > p2 are determined which satisfy (17). For each such 
prime p3 we test whether (1 0)-(13) are fulfilled. If not, we proceed to the next 
m, where we can restrict ourselves to those m with gcd(q, m) = 1. If the 
above conditions hold for a, pair m, p3, then p4 = 1 + (qp3 - 1)/m is tested 
for primality. 

In the case of success, qp3p4 is a Carmichael number. When only Carmichael 
numbers < u are wanted, only those p3 have to be taken into account for which 

2 
p3 < min{2q _3q + 2, u/q} 

holds. 



THE CARMICHAEL NUMBERS TO 1012 387 

Example. Let p1 = 3, P2 = 5. Here we have q = 15 and m runs through 
the values 2, 4, 7, 8, 11, 13, 14. When m = 4, there is no prime p3 > 5 
for which (17) holds. For m = 11, 1-3, 14 there exists no prime satisfying 
(10) and (17). For m = 2, 7 there are primes satisfying (10), (11), (12), and 
(17) but not (13). Finally, for m = 8 we find p3 = 47 and p4 = 89, so that 
n = 3 . 5 - 47 - 89 = 62745 is the only Carmichael number that has four factors 
and is divisible by 15. 

3. SPECIAL METHOD FOR CARMICHAEL NUMBERS 

WITH THREE PRIME FACTORS 

Analogously to the algorithm in ?2 for Carmichaels with four factors, we 
proceed in the case of Carmichaels with three factors. If p1 is a given prime, 
then for all m = 2, ... , P1 - 1 we perform the following steps. 

Step 1. Determine the primes P2 > PI for which 

m(p2- 1) divides p1p2+p1(m- 1)-m. 

Step 2. For each prime P2 found in Step 1 we test whether 

2 
p1p2+P2(m-1)-m modm . (PI - 1). 

Step 3. Proceed with,the next m if the conditions in Step 2 are not satisfied. 
Otherwise calculate p3 = 1 + (pIP2 - 1)/m and check for primality. 

Step 4. When p3 is not prime proceed with the next m. Otherwise PIp2p3 is 
a Carmichael number. 

Since for each p1, m runs only through p1 - 2 values, the algorithm is very 
fast for relatively small p1 

4. RESULTS 

Denote by C(r, u) the number of Carmichael numbers which are less than u 
and have exactly r prime factors. Then the third column of Table 1 represents 
the new results. 

TABLE 1 

r C(r, 25* 109) C(r, 10 ) 

3 412 1000 
4 795 2102 
5 756 3156 
6 192 1713 
7 8 260 
8 0 7 

9 0 0 
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The sum 
8 

C(10 )=Z,C(r, 10 ) 
r= 1 

yields the total number of Carmichaels below 10 12, namely C(10 ) = 8238. 
12 Remark. It is easy to show that no Carmichael number exists below 10 with 

more than eight prime factors. 
With Q(r) denoting the number of (r - 1)-tuples (P,I .Pr- 1) which have 

to be tested in order to find all Carmichaels smaller than 10 12, we obtain 
Table 2. 

TABLE 2 

r Q(r) 
3 2260848 
4 8372508 
5 8613292 
6 2924698 
7 304934 
8 6904 

The values of Table 2 shed some light on the requirements of computer time 
for finding the Carmichaels less than 1012. It took several hundred hours on 
an IBM 3083 at the Scientific Center in Heidelberg. 

Remark. The values Q(3) and Q(4) are included in Table 2, since we did not 
compute the total requirements for the special algorithms in ??2 and 3. 

Let C(x) denote the number of Carmichael numbers less than x, and let 
logk x denote the k-fold iteration of the natural logarithm. 

Put, according to [3], 

F(x) =xexp -logx. 1 log2x , 

and let 

J(x) x ( exp log 
X 

log3 X + 1g4 X+ 

log2 X 7.1287 logx - 0.2289log4x + 2.0161)) 

log2 x 

Then we obtain Table 3 (the values in columns 3, 4 are rounded to integers). 
It turns out that C(x)/F(x) decreases relatively fast in accordance with the 

result C(x) = o(F(x)) in [2]. The approximation J(x) relies on the heuristics 
of [2] and gives rise to a relative error of at most 1.4 percent for all integers in the 
range 101? < x < 1012, and at most 1 percent in the range 25. 109 < x < 1012. 
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TABLE 3 

x C(x) F(x) J(x) C(x)/F(x) C(x)/J(x) 
10 646 547 640 1.18 1.0089 

10 1? 1547 1470 1547 1.05 0.9999 

25T 10 2163 2189 2173 0.9882 0.9952 

10 11 -3605 4016 3605 0.8977 0.9999 

10_12_ 8238 11141 8238 0.7394 0.9999 

This is obtained by computing the values of J(x) for all x and x - 1, where 
x is a Carmichael number, and the fact that J increases in the range under 
consideration. 

In [3], Table 4 shows the distribution of Carmichaels less than 25* 109 in 
different residue classes. Since the distribution of Carmichaels in the range 
< 1012 is a similar one, we give here only the values for the odd residue classes 
mod 12. 

TABLE 4 

Class mod 12 Carms < 25000000000 Carms < 1000000000000 
1 2071 7966 
3 0 1 
5 20 64 
7 47 147 
9 25 60 
1 1 0 0 
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